Realizing Interval Graphs with Size and Distance Constraints
نویسندگان
چکیده
We study the following problem: given an interval graph, does it have a realization which satisfies additional constraints on the distances between interval endpoints? This problem arises in numerous applications in which topological information on intersection of pairs of intervals is accompanied by additional metric information on their order, distance, or size. An important application is physical mapping, a central challenge in the human genome project. Our results are (1) a polynomial algorithm for the problem on interval graphs which admit a unique clique order (UCO graphs). This class of graphs properly contains all prime interval graphs. (2) In case all constraints are upper and lower bounds on individual interval lengths, the problem on UCO graphs is linearly equivalent to deciding if a system of difference inequalities is feasible. (3) Even if all the constraints are prescribed lengths of individual intervals, the problem is NP-complete. Hence, problems (1) and (2) are also NP-complete on arbitrary interval graphs.
منابع مشابه
Solis Graphs and Uniquely Metric Basis Graphs
A set $Wsubset V (G)$ is called a resolving set, if for every two distinct vertices $u, v in V (G)$ there exists $win W$ such that $d(u,w) not = d(v,w)$, where $d(x, y)$ is the distance between the vertices $x$ and $y$. A resolving set for $G$ with minimum cardinality is called a metric basis. A graph with a unique metric basis is called a uniquely dimensional graph. In this paper, we establish...
متن کاملInterval Graphs with Side ( and Size )
We study problems of determining whether a given interval graph has a realization which satisses additional given constraints. Such problems occur frequently in applications where entities are modeled as intervals along a line (events along a time line, DNA segments along a chromosome, etc.). When the additional information is order constraints on pairs of disjoint intervals, we give a linear t...
متن کاملA New Method for Solving the Fully Interval Bilevel Linear Programming Problem with Equal Constraints
Most research on bilevel linear programming problem is focused on its deterministic form, in which the coefficients and decision variables in the objective functions and constraints are assumed to be crisp. In fact, due to inaccurate information, it is difficult to know exactly values of coefficients that used to construct a bilevel model. The interval set theory is suitable for describing and...
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملGeneralized Degree Distance of Strong Product of Graphs
In this paper, the exact formulae for the generalized degree distance, degree distance and reciprocal degree distance of strong product of a connected and the complete multipartite graph with partite sets of sizes m0, m1, . . . , mr&minus1 are obtained. Using the results obtained here, the formulae for the degree distance and reciprocal degree distance of the closed and open fence graphs are co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 10 شماره
صفحات -
تاریخ انتشار 1997